Formation of Solvent-Separated Ion Pairs in Calixarene Ester-Alkali Picrate Complexes

Takashi Arimura, Michio Kubota, Tsutomu Matsuda, Osamu Manabe,† and Seiji Shinkai*
Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Fukuoka 812
†Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Nagasaki 852
(Received December 5, 1988)

Synopsis. Association constants (K_a) of calix[n] arene esters $(\mathbf{l}_n: n=4, 6, 8)$ for alkali picrates have been determined in tetrahydrofuran and compared with the \mathbf{l}_n -induced bathochromic shifts of the absorption maxima of alkali picrates. It has been established that $(1) \mathbf{l}_n$'s mostly form the 1:1 complexes with alkali metal cations, (2) the K_a values for \mathbf{l}_n are generally smaller than those for crown ethers, and (3) the certain \mathbf{M}^+ - \mathbf{l}_n complexes are considerably solvent-separated because of the "encapsulation effect" of the calixarene cavity. This is the first example for the systematic investigation on the relation between K_a and the geometry of the calixarene ester complexes.

Calixarenes are cyclic oligomers made up of phenol units. It has been found that the ester derivatives (\mathbf{l}_n) show the ionophoric nature and capable of binding alkali metal, alkaline earth metal, and diazonium ions are crown ethers do. 1-6) In particular, the tetramer (14) exhibits the markedly high Na+ selectivity.1-5,7) Arduini et al.2 proposed on the basis of the 1H NMR measurements that Na+ is "encapsulated" in the cavity constructed with the ionophoric -OCH2COO- groups (Fig. 1). Here, two questions occur to us which are both related to the essential behaviors of \mathbf{l}_n as ionophores: that is, if $\mathbf{1}_n$ really forms the encapsulated complexes as illustrated in Fig. 1, then (i) do they form only the 1:1 metal/ l_n complexes but not the 1:2 metal/ \mathbf{l}_n sandwich complexes as seen for certain crown ethers? and (ii) do they show the characteristics of solvent-separated ion pairs? Recently, Inoue et al.8) suggested an interesting idea that the bathochromic shift of the absorption band of the picrate anion, extracted into the organic phase with a macrocyclic ligand from aqueous metal picrate solutions, serves as a convenient measure for evaluating the ion pair tightness in solution. We thus studied the spectroscopic behaviors of alkali picrates (M+Pic-) in tetrahydrofuran (THF) in the absence and the presence of \mathbf{l}_n and estimated the stoichiometry and the nature of the ion pairs.

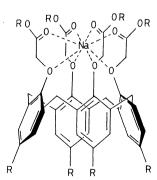
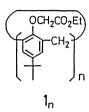



Fig. 1. Encapsulation of Na+ by 14.

Experimental

Preparations of l_4 (25,26,27,28-tetrakis(ethoxycarbonylmethoxy)-p-t-butylcalix[4]arene), l_6 (37,38,39,40,41,42-hexakis(ethoxycarbonylmethoxy)-p-t-butylcalix[6]arene), and l_8 (49,50,51,52,53,54,55,56-octakis(ethoxycarbonylmethoxy)-p-t-butylcalix[8]arene) were described elsewhere. l-l0 All the spectroscopic measurements were carried out at 30 °C in THF.

Results and Discussion

The λ_{max} of M+Pic⁻ shifted to longer wavelengths with a few isosbestic points with increasing \mathbf{l}_n concentrations. The spectral change is similar to that in the presence of crown ethers.⁹⁾ From a plot of the absorbance for the new λ_{max} vs. \mathbf{l}_4 concentration we could determine the stoichiometry (by the molar ratio method) and the K_a (by the Benesi-Hildebrand plot). When the spectral change was relatively small, we employed the continuous variation method (absorbance for the new λ_{max} vs. $[M+Pic^-]/([M+Pic^-]+[\mathbf{l}_n])$ to determine the stoichiometry. However, the spectral changes observed for Li^+ - $\mathbf{l}_n(n=4, 6, 8)$, K^+ - \mathbf{l}_4 and Cs^+ - \mathbf{l}_4 were still too small to determine the stoichiometry. The results are summarized in Tables \mathbf{l} - $\mathbf{3}$.

It is seen from Table 1 that 1_n 's mostly form the 1:1 complexes with alkali metal cations. This implies that metal cations are bound deeply in the cavity, the complexes being classified as a "nest-in-type". In crown ether chemistry, "perch-on-type" complexes, which frequently lead to the formation of 1:2 metal/crown sandwich complexes, result when the size of metal cations is greater than the cavity size. The metal selectivity in Table 3 suggests that the cavity

Table 1. Stoichiometry of 1_n-Alkali Picrate (M+Pic⁻) Complexes

1 _n -	M+Pic-				
	M+=Li+	Na+	K+	Cs+	
n=4	a)	1:1	a)	a)	
n=6	a)	1:1	1:1	1:1	
n=8	a)	1:1	1:1	1:1	

a) The spectral change was too small to determine the stoichiometry.

Table 2. Bathochromic Shifts ($\Delta \lambda$, nm) of $\lambda_{\text{max}^{a}}$

Ionanhara	M+Pic-				
Ionophore	$M^{+}=Li^{+}$	Na+	K+	Cs+	
14	1	31	2	0	
16	1	6	25	20	
18	1	1	11	6	
18-Crown-6	1	29	13	5	
Cryptand 222		31	29	25	

a) The λ_{max} values of M+Pic⁻ in the absence of \mathbf{l}_n are 343 nm for Li⁺, 351 nm for Na⁺, 357 nm for K⁺, and 362 nm for Cs⁺.

Table 3. Association Constants (K_a)

Ionophore	log K _a for M+Pic ^{-b)}					
ionophore	M+=Li+	Na+	K+	Cs+		
14	3.00	3.95	3.08	1.60		
16	2.78	3.15	4.13	4.52		
18	2.08	2.61	3.11	3.08		
18-Crown-6a)	3.72	4.29	5.33	4.91		
Cryptand 222	_	6.69	8.38	6.61		

a) The measurements were carried out mainly at [18-crown-6]/[M+Pic⁻]<2.0 so that the K_a values reflect those for the 1:1 complexes. b) $K_a=[M+Pic^-\cdot \mathbf{1}_n]/[M+Pic^-][\mathbf{1}_n]$.

sizes of 1_4 and 1_6 are comparable with those of 15-crown-5 and 18-crown-6, respectively. Hence, the formation of the sandwich complex with 1_n is expected, if it exists, for Cs^+-1_4 . Although the stoichiometry for this complex could not be determined even by the continuous variation method, the Benesi-Hildebrand plot (at $[1_4]/[Cs^+Pic^-]=10-100$) used assuming the formation of the 1:1 complex gave a good linear relationship ($\tau>0.98$). Probably, this complex also consists of 1:1 $Cs^+/1_4$. It is known that calix[8]arene derivatives having a large cavity are capable of including two guest molecules. 10,11 In the present system, however, we could not find any evidence for the formation of 2:1 $M^+/1_8$ complexes.

The λ_{max} for M+Pic⁻ in the absence of \mathbf{l}_n shifted to longer wavelengths in the order of Li+ \langle Na+ \langle K+ \langle Cs+ \rangle . This order reflects the looseness of the ion pairs. The bathochromic shifts of λ_{max} induced by the addition of \mathbf{l}_n are recorded in Table 2. The largest shift (31 nm) was attained for Na+- \mathbf{l}_4 . This shift is comparable with that induced by cryptand 222 and even greater than that induced by 18-crown-6, supporting the formation of the solvent-separated ion pair. The significant bathochromic shifts were also observed for K^+ , Cs+- \mathbf{l}_6 (20—25 nm). In contrast, the shifts induced by \mathbf{l}_8 were generally small. Presumably, even though \mathbf{M}^+ is entrapped in the cavity of \mathbf{l}_8 , the \mathbf{M}^+ -Pic- interaction can still exist because of the flexible, large cavity.

Comparison of Table 2 with Table 3 reveals that these two recognition patterns are surprisingly similar: that is, the greater the K_a , the larger bathochromic shift occurs. This means that the stable \mathbf{l}_n complex encapsulates \mathbf{M}^+ deeply in the cavity resulting in the solvent-separated ion pair. The largest K_a was attained for $\mathbf{Cs^{+-l_6}}$ but not for $\mathbf{Na^{+-l_4}}$. This implies that

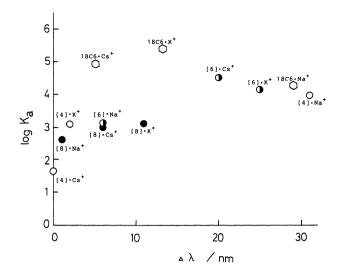


Fig. 2. $\log K_a$ vs. $\Delta \lambda$ map. In the figure 1_n 's are abbreviated with [n].

Na⁺Pic⁻ bound to 1₄ is considerably solvent-separated but the complex is not so stable as that of Cs⁺-1₆. The discrepancy is probably related to the rigid nature of the calix[4]arene skeleton which is the origin of the sharp Na⁺ selectivity: that is, the cavity of 1₄ is so small and so rigid that the Na⁺-Pic⁻ interaction is efficiently shut down by the encapsulation of Na⁺. On the contrary, 1₆ having the moderately rigid skeleton rather gives the stable complexes although the metal selectivity becomes inferior to that of 1₄.

Based on these foregoing findings, we illustrated a $\log K_a$ vs. $\Delta \lambda$ map (Fig. 2). The map explicitly clarifies several novel facets of the M^+-1_n complexes. Firstly, 18-crown-6 forms the considerably stable K⁺ and Cs+ complexes but they are less solvent-separated. In contrast, the K_a for Na⁺ is smaller than these but the ion pair is much more solvent-separated. Secondly, the K_a values for $\mathbf{1}_n$ are generally smaller than those for 18-crown-6. Nevertheless, certain complexes (e.g., $Na^{+}-l_{4}$, $K^{+}-l_{6}$, and $Cs^{+}-l_{6}$) result in the solventseparated ion pairs in which the bathochromic shifts greater than 20 nm are observed. This indicates that the solvent-separatedness of these complexes is comparable with that of the cryptand complexes. The unusual power of \mathbf{l}_n is ascribed to the "encapsulation effect", which appears most clearly in \mathbf{l}_n having the small, rigid skeleton. Thirdly, the 18 complexes give the $\log K_a=2.8\pm0.3$ for Na+, K+, and Cs+. The nonselective nature suggests that the ion complexation with 18 occurs according to an "induced-fit" manner. Lastly, the Cs⁺-1₄ complex, a combination of the large alkali metal cation and the small calixarene cavity, did not cause any bathochromic shift but slightly increased the absorbance. The K_a estimated from this absorbance increase was only 40 dm³ mol⁻¹. The data visualize the Cs+-14 complex geometry: 14 weakly interacts with Cs+ but cannot encapsulate Cs+ enough to interfere with the Cs+-Pic- interaction.

In conclusion, the present study systematically demonstrated that (i) calixarene esters l_n 's mostly form the 1:1 complexes with alkali metal cations and (ii)

they have a tendency to produce the solvent-separated ion pairs. Thus, small Na+ ion is easily encapsulated leading to the solvent-separated ion pairs, whereas large Cs+ ion is exposed to solvent media leading to the contact ion pairs. Further investigation on the reactivities and the geometries of these solvent-separated ion pairs is currently continued in our laboratories.

This research was supported by the Grant-in-Aid from the Ministry of Education, Science and Culture. We thank Miss Sayuri Edamitsu (Nagasaki University) and Miss Tomoko Nakane (Kyushu University) for technical assistance.

References

- 1) R. Ungaro, A. Pochini, and G. D. Andreetti, J. Inclusion Phenom., 2, 199 (1984).
- 2) A. Arduini, A. Pochini, S. Reverberi, R. Ungaro, G. D. Andreetti, and F. Ugozzoli, *Tetrahedron*, **42**, 2089 (1986).
 - 3) S.-K. Chang and I. Cho, Chem. Lett., 1984, 474.
- 4) S.-K. Chang and I. Cho, J. Chem. Soc., Perkin Trans. 1, 1986, 211.
- 5) M. A. McKervey, E. M. Seward, G. Ferguson, B. Ruhl, and S. Harris, J. Chem. Soc., Chem. Commun., 1985, 388.
 - 6) S. Shinkai, S. Edamitsu, T. Arimura, and O. Manabe,

- J. Chem. Soc., Chem. Commun., 1988, 1622.
- 7) K. Kimura, M. Matsuo, and T. Shono, Chem. Lett., 1988, 615.
- 8) Y. Inoue, C. Fujiwara, K. Wada, A. Tai, and T. Hakushi, J. Chem. Soc., Chem. Commun., 1987, 393.
- 9) M. Bourgoin, K. H. Wong, J. Y. Hui, and J. Smid, J. Am. Chem. Soc., 97, 3462 (1975).
- 10) B. M. Furphy, J. M. Harrowfield, D. L. Kepert, B. W. Skelton, A. H. White, and F. R. Wilner, *Inorg. Chem.*, 26, 4231 (1987).
- 11) S. Shinkai, K. Araki, and O. Manabe, J. Am. Chem. Soc., 110, 7214 (1988).
- 12) In order to obtain a further insight into the $\mathbf{l}_n \cdot \mathbf{M}^+ \mathbf{Pic}$ ion pairs we measured the ²³Na NMR in THF/THF- d_8 mixed solvent at 30 °C. We unexpectedly found that the peak for Na⁺ (added as M⁺Pic⁻ (6.8×10⁻³ mol dm⁻³)) is invariably broadened in the presence of \mathbf{l}_n : for example, the T_2 values, which can be directly calculated from the peak width (T_2 =($\pi\delta_{\nu_1/2}$)⁻¹ where $\delta_{\nu_1/2}$ denotes the half height line width in Hz) are 7.08×10^{-4} s in the absence of \mathbf{l}_n , 1.62×10^{-5} s in \mathbf{l}_4 (140 mmol dm⁻³), 2.11×10^{-5} s in \mathbf{l}_6 (470 mmol dm⁻³), and 3.18×10^{-5} s in \mathbf{l}_8 (340 mmol dm⁻³). Such a broadening effect was not found for Na⁺ bound to cyclic polyethers: T_2 =8.85×10⁻⁴ s in 18-crown-6 (340 mmol dm⁻³) and 1.47×10⁻³ s in cryptand 222 (670 mmol dm⁻³). The similar observation was reported by Jin and Ichikawa: paper presented at the 57th Annual Meeting of the Chemical Society of Japan, Sendai, 1988, September.